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ABSTRACT

A model problem related to distributed receptivity to free-stream acoustic waves

in laminar flow control (LFC) configurations is studied, within the Orr-Sommerfeld frame-

work, by a suitable extension of the Goldstein-Ruban theory for receptivity due to localized

disturbances on the airfoil surface. The results thus complement the earlier work on the

receptivity produced by local variations in the surface suction and/or surface admittance.

In particular, we show that the cumulative effect of the distributed receptivity can be sub-

stantially larger than that of a single, isolated suction strip or slot. Furthermore, even

if the receptivity is spread out over very large distances, the most effective contributions

come from a relatively short region in vicinity of the lower branch of the neutral stability

curve. The length scale of this region is intermediate to that of the instability wave and the

distance from the leading edge, being, in fact, a geometric mean of these two length scales.

Finally, it is found that the receptivity is effectively dominated by a narrow band of Fourier

components from the wall-suction and admittance distributions, roughly corresponding to

a detuning of less than ten percent with respect to the neutral instability wavenumber

at the frequency under consideration. The results suggest that the drop-off in receptivity

magnitudes away from the resonant wavenumber is nearly independent of the frequency

parameter.



1. INTRODUCTION

Theimportanceof short-scalenonuniformitieson theairfoil surfacein makingthe

boundarylayerreceptiveto free-streamdisturbancesis nowwell established.Subsequent

to the recenttheoreticalbreakthroughby Goldstein[1]andRuban[2],anumberof problems

involvingdifferentcombinationsof surfaceperturbationandfree-streamdisturbancehave

beenstudiedin variousflow regimesusingboth analyticaland numericaltechniques[3-171.

Additionally,experimentalstudies[lS-_l],albeit limited to low-speedflowsthus far, have

alsocontributedgreatlyto ourunderstandingof thesereceptivityprocessesby inspiringor

verifyingthe theoriesaswell asby delineatingthe rangeof applicabilityof the different

approximationsusedin theories.For reviewson differenttypesof receptivity problems,

see22-26,and alsoRef. 8 listedearlier. Mostof this effort hasfocusedon single,isolated

surfaceinhomogeneities,with the exceptionof Crouch [5'6] who examined the nonlocalized

receptivity due to a sinusoidal perturbation in the surface height. However, the conclusions

of Refs. 5 and 6 concerning the magnitude of receptivity are contradictory to each other,

and furthermore, the technique from these references appears suitable only for spatially ho-

mogeneous distributions containing a finite number of Fourier modes. On the other hand,

Choudhari and Streett [4] have shown how the Goldstein-Ruban ideas can be used in combi-

nation with the local Green's function concept of Tam [27] for predicting the receptivity over

longer regions by a simple extension of the results obtained for localized nonuniformities.

tIere we take the route suggested by these latter investigators to study the acoustic

receptivity due to an elongated region (i.e., much longer than an instability wavelength) of

short-scale variations in the surface-porosity or suction-rate distribution. Suction is a com-

mon means to delay transition by stabilizing the laminar boundary layer, and a prefered

choice for the design of a laminar flow control (LFC) system corresponds to suction dis-

tributed over a major portion of the airfoil surface through an array of porous strips [2s-3°] .

Another option, which is nearly as effective, but is somewhat undesirable from a struc-

tural point of view, involves suction through a series of narrow surface slots in place of the

porous strips. The main benefit of surface-suction is that it inhibits growth of the primary
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instabilities[3°-34],althoughtherehavealsobeensometheoreticalstudiesillustrating the

useof suctionfor controllingthe nonlinearstagesof transition[35-371.However,asshown

by KerschenandChoudhari[a], anundesirablesideeffectof theseLFC configurations is an

increased receptivity to unsteady free-stream disturbances which may offset the gain (in

terms of reduced disturbance growth) to a certain extent. Thus, for a proper design of

the LFC system, it is essential to understand the various routes, along with the associated

magnitudes, of receptivity induced by the use of suction.

Kerschen and ChoudhariIa] showed that the porous strip design can cause recep-

tivity to acoustic type disturbances via two different mechanisms, the first being due to

the short-scale mean flow gradients induced by variations in the wall suction, while the

other (and perhaps more important) one is related to the accompanying variations in the

admittance of the porous surface used for suction. They analyzed the acoustic receptivity

in a localized area of short-scale variation, and were able to predict the influence of the

width of a porous strip on the amplitude of the generated instability wave. In this paper,

we consider the receptivity due to the entire suction system in the hope of shedding some

light on the role of spacing between the adjacent suction strips/slots.

In Section 2, we describe how to calculate the receptivity due to surface non-

uniformities spread over a region of arbitrary length. The advantage of the proposed

Green's function technique is that it provides a convenient tool to analyze arbitrary nonlo-

calized geometries instead of just quasiperiodic distributions. Numerical results for several

representative wall-suction or admittance distributions are presented in Section 3. Partic-

ular emphasis is placed on predicting the receptivity due to individual Fourier components

of the distributed geometry. Conclusions derived from the analysis as well as numerics are

presented !n Section 4.
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2. ANALYSIS

In this Section, we describe how the Goldstein-Ruban theory for receptivity in-

duced by a local surface disturbance can be extended to distributed surface irregularities.

However, before doing that, it will be useful to understand the physical ideas behind the

generation of instability waves in a boundary-layer flow. Basically, the instability wave at

any given frequency corresponds to the nearly periodic eigensolution of the small distur-

bance equations about the basic state of the quasi-parallel boundary layer. As discussed

by Kerschen [s], the free-stream disturbances at this frequency have much different wave-

lengths than that of this eigenso]ut]on, and therefore, cannot excite tile instability wave

in a direct manner. The length-scale conversion or "tuning" process is brought about by

the scattering of the forced unsteady motion, either at boundary inhomogeneities (such as

variations in admittance or compliance of the airfoil surface) or in regions of rapidly vary-

ing (i.e., nonparallel) mean flow. The possible causes for mean flow non-parallelism include

the leading edge as well as locally varying surface conditions in the downstream region,

such as _-ariations in the geometry, suction or blowing velocity, and surface temperature.

In case of boundary layers which are also unstable to steady vortex type of instabilities,

these surface disturbances act as sources of streamwise vorticity that gets amplified farther

downstream [1_'2_]. Because of their broad variety as well as close proximity to the region of

instability, the surface perturbations constitute a particularly important class of receptivity

agents.

The first theoretical investigations in this class were by Goldsteinll] and Ruban [2],

who used large Reynolds number asymptotics to show how an isolated surface distortion

can interact with a free-stream acoustic wave to generate a Tollmien-Schlichting (T-S) wave

in the region downstream. Since the role of all types of surface perturbations is essentially

the same, namely, to provide the length scale required for coupling the free-stream and

boundary-layer disturbances, the Goldstein-Ruban ideas are applicable, in principle, to this

entire class of receptivity problems (see, for example, Refs. 3-17). In fact, Choudhari and

Streett [4] and Federov et al (private communication) have shown how the Goldstein-Ruban



frameworkcanalsobeextendedto instability typesother thanT-S whilesimultaneously

accountingfor additionalfinite Reynoldsnumbereffects.It is this finite Reynolds-number

implementationthat will form the basisfor the analysisof distributed receptivity to be

presentedill this Section.In principle,theproblemof receptivityin anLFC confguration

severalwavelengthslongcouldalsohavebeentackledby anextensionof the triple deck

resultsfor the localizedcase(Ref. 3). However,from our point of view, it merelyseemed

moreconvenient,andperhapsmoreaccurateaswell[4],to usethe finite Reynoldsnumber

approachinstead.

In thispaper,wewill restrictourattentionto thelowMachnumberlimit and,fur-

thermore,assumetile geometryto beaflat surfacewith specifiedadmittancedistribution;

however,thespeedandgeometrylimitationscanbe removedquiteeasily.Thedensityand

kinematicviscosityof the fluid aredenotedby p* and v*, respectively, and the incoming

free stream is assumed to consist of a mean flow with speed U& plus a time harmonic

acoustic perturbation with frequency 0a* and a streamwise velocity fluctuation of ampli-

tude u_(<< U_o). Since the acoustic wavelength is effectively' infinite in the incompressible

limit, the inviscid slip velocity above the surface is given by

oo £-- iw* t*= u:o (1 + ), (2.1)

where e:,(<< 1) denotes the vanishingly small parameter associated with tile free-stream

disturbance amplitude u'_o/U*. The unsteady part of the slip velocity is also accompanied

by a time harmonic, but spatially uniform pressure gradient of amplitude -iw*p*u*_¢.

As discussed by Kerschen and Choudhari [31, these pressure fluctuations set up an

unsteady mass flux across the porous surface, the distribution of which depends not only

on the surface porosity, but also on the design of other components beneath the surface.

ttowever, the typical magnitude of this unsteady flux is quite small, since the porous surfaces

used for LFC applicalions usually have rather small porosities. In addition, the design of the

suction systems is such that the surface may be assumed to be "locally reacting", i.e., the

unsteady flux at any location depends only upon the local details of the LFC configuration,
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andcan,therefore,be relatedto the incidentpressurefluctuationby specifyingthe surface

admittancedistributiont

Sincethe absolutevalueof the pressurebecomesirrelevantin the incompressible

limit, it seemsmoreappropriateto directly imposea short-scaledistribution of the un-

steadynormalvelocityat the wall insteadof computingit indirectly by usingthe surface

admittancedistributionin conjunctionwith the specifiedacousticamplitude.Thus,if the

surfaceadmittancefl*p* 7*oo is assumed to be of O(¢_ )) (E(w2) << 1), then the correspond-

ing unsteady velocity at the surface scaled by the acoustic particle velocity, v_/u*c, is also

of O(e(_2,)), and ill addition, has the same spatial distribution as the surface admittance

in the low Mach number limit. One may note that specifying the surface admittance, or

equivalently, the unsteady surface velocity, has the advantage of rendering the results in-

dependent of the details of the suction system design beneath the surface; however, it may

at times prove more useful to solve for the unsteady motion above and below the porous

surface in a coupled manner. Pal et a/[17] have recently used this approach to model the

experiments of Wlezien et a/[2°] on receptivity near a porous suction strip with a large back-

ing cavity underneath. Finally, it is also worth noting that in addition to modelling the

wall admittance variation, the unsteady mass flux at the wall may also represent unsteady

disturbances within the suction system, especially in designs with large suction slots.

Thus, we assume that the distributions of both the steady (suction/blowing) and

unsteady (related to admittance) components of the normal velocity at the surface have

weak but short-scale variations with respect to the streamwise coordinate in a region of

arbitrary length located downstream of the leading edge (Figs. la-b). In more precise

terms, these distributions are assumed to be given by

tT(x* ) = e_ ) F(1)(z*)U * , (2.2a)

t The admittance of a surface is defined as the ratio, at the surface, of the (reduced)

unsteady normal velocity to the fluctuating component of pressure.



and

= ")UL , (2.2b)

where the nondimensional parameters ¢_ ) and e(_) characterize the small magnitudes of

the wall suction-velocity and wall admittance, respectively, while functions F(1)(x *) and

F(2)(x *) denote the (normalized) distributions of these quantities along the streamwise

direction. As mentioned previously, the long wavelength acoustic wave can excite the

boundary-layer instabilities via an interaction with the surface disturbances only if the

length scale of the latter becomes comparable to the instabillty wavelength in at least a

part of the entire region. However, other than this condition, the distribution functions

F(1)(x *) and F(2)(x *) can assume any arbitrary form during this analysis. Both of the

above constraints relating to the magnitude and length scale of the V_(x*) and v*(x*)

distributions are consistent with the typical designs of LFC systems.

In order to distinguish between the dependence on the longer length scale corre-

sponding to the slow growth of the unperturbed boundary layer and the shorter length scale

of the imposed surface disturbance, we introduce the streamwise coordinates x = x'/g* and

X = x*/L*, respectively. Here x* denotes the distance from the leading edge with the ref-

erence length g* being chosen so as to make x = O(1) (Fig. lb). The Reynolds number

Re* (= U_g*/u*) is assumed to be sufficiently large so the stability of the unperturbed

mean flow is governed by the classical, quasi-parallel theory. The shorter length scale

L* represents a typical instability wavelength, which is asymptoticaly much larger than

the thickness of the boundary layer. However, it is traditional in the classical stability

theory to use the same shorter length scale for both the streamwise and wall-normal di-

rections, and accordingly, we will identify L* with a typical boundary-layer thickness, and

define the nondimensional wal]-normal coordinate as Y = y*/L* and the streamfunction

as ¢ = _b*/(U_L*). Similarly, the nondimensional time t and frequency w will be assumed

to have been normalized by L*/U_ and its inverse, respectively. Note that the precise

definition of the reference length scales will be left open for the time being since doing so

will prove convenient for subsequent manipulations.



The streamfunctions _,(J), j = 1,2, are governed by the two-dimensional Navier-

Stokes equation,

0V2_ (j) 0_ ,(j) 0V2_b (j) O_,(j) 03¢ (j) 1
--+

Ot OY OX OX OY a R6.
V4_b (j) = 0 , (2.3)

where the suffix j has been introduced to distinguish between the receptivity due to wall

suction (j = 1) and the wall admittance (j = 2) variations. Accompanying the differential

equation (2.3) are the inhomogeneous surface boundary conditions

o) _ )
OX

and

o)
OX = ef_e(_)F(°')(X) e -i_t , (2.4b)

corresponding, respectively, to specified distributions of the mean and unsteady components

of the normaJ velocity at the wall. Since the surface porosities are assumed to be small,

motion at the surface location is nearly in the normal direction, and, therefore, both _(1)

and _b(2) can be assumed to satisfy the no-slip condition at Y = O. Finally, each of these

streamfunctions needs to match the imposed free-stream behaviour (2.1) far away from the

wall.

This completes the formulation of the problem. In the remaining part of this

Section, we describe how the small-amplitude assumption concerning the surface and free-

stream perturbations can be utilized in determining the instability motion generated in

both cases. This analysis hinges heavily upon the earlier asymptotic anaJyses[1-3], as well

as on the fin]te Reynolds number adaptations thereof, for a localized receptivity problem.

Therefore, only a brief sketch of the derivation will be given here, leaving the interested

reader to find the details in the above mentioned references.

For the doubly-linearized receptivity problems (i.e., both e_ ), e/8 << 1), one

can expand the flow variables in the form of a dual perturbation series. Such a series was

used originally by Goldstein and Ruban (and subsequently in Refs. 3, 7, 8, 10- 12, 16, 26),
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to obtain closed form solutions to the localized receptivity problem via a rational (triple

deck) treatment of the finite Reynolds number effects and, more recently, in Refs. 4, 5, 15

and 17, to obtain numerical solutions in the framework of the (nonasymptotic) classical

stability equations. The streanffunctions _(J) can thus be written in the form

¢(J) =  o(x,Y) + 61j, +

,:. e (j),',(j)''_ Y)e -iw` _ e(wj)2 R_-.1) , (2.5)

where the factor _l,j is equal to unity for j = 1, and zero otherwise. Each term in this

perturbation sequence represents a unique combination of spatial and temporal scales re-

lated to the physical origin of this perturbation; the dichotomy of streamwise length scales

is symbolized by using the suffixes 0 or 1, while the steady and unsteady components of

motion are distinguished by using upper and lower case letters, respectively. The zeroth-

order term _0 represents the streamfunction corresponding to the mean boundary-layer

flow which would exist in the absence of both the wall-suction and the free-stream dis-

turbance. Thus, it is steady, and in the streamwise direction only depends upon the slow

coordinate x. For the flat-plate geometry under consideration, it is given by the self-similar

Blasius solution. The quantities qg_l) and _0 denote the first-order perturbations to this

base flow due to the steady surface suction and the unsteady f_ee-stream disturbance, re-

spectively. Accordingly, _1) is a steady perturbation, but varies on the faster streamwise

scale X of the wall suction distribution, while ¢0 represent:; the acoustic boundary-layer

motion and, therefore, varies on the longer x scale only. I'l fact, to the leading order in

Reynolds number expansion, it is given by the x-independent Stokes shear wave solution,

which also turns out to be sufficiently accurate for our purpose. One may note that, in

order to generate an instability wave, it is necessary to excite a boundary-layer motion

having shorter scales in both space and time dimensions. The first term in the perturba-

tion series which posseses this required characteristic is tae O(e/s e_ )) term produced by

the interaction of the 0(¢_ )) and O(e]s) perturbations. As pointed out by Kerschen and

Choudhari [3], in the case of suction-induced receptivity, _his O(¢/s E(wj)) term corresponds
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to a temporal modulation of the short-scale mean flow gradients induced by wall suction

variation, while in the wall-admittance problem, it represents the scattering of the incident

acoustic motion by the O(e_ )) variations in surface admittance.

Our objective here is to solve the receptivity problem and not to obtain the com-

plete second-order asymptotic expansion for the boundary-layer motion. To obtain the

leading-order solution for the receptivity problem, it is sufficient to solve for just the

O(E.f s _(j)_ ,-_ (j)2_w j term and ignore the other second-order terms, namely, O(e_s ) and o_,ew ),

since they do not possess the desired combination of spatio-temporal scales. Moreover,

since we are only interested in the part of g,_J) which corresponds to the instability wave,

it is not even necessary to obtain a complete solution for the O(efs e0")) term. The way

we accomplish this limited objective is to first isolate the T-S wave produced in each local

region and then sum over all these contributions to obtain the total instability amplitude

at any given location. While carrying out this integration process, we also account for

the changes in phase and amplitude of the instability wave in travelling from its source

location to the observation point. The weakly-nonparallel effects due to streamwise diver-

gence of the base flow are unimportant in calculating the local contribution, but they can

become significant during propagation if distances comparable to the body length scale (g*)

are involved. However, these effects can be accomodated post-facto by using results from

standard weakly-nonparallel theory [as].

Substituting the perturbation expansion (2.5) into (2.3), collecting terms of O(e_ )efs),

and exploiting the disparity of length scales between the slowly-evolving solutions (90 and

_,/'0)and the short-scale motion of interest here, we obtain the usual equation governing the

propagation of unsteady disturbances in a parallel shear flow,

OV2g'} j) 0_o OV2_I i) 03_o 0_I i) 1 V4_/,(j) + O(e_.)
Ot -[- OF OX OY 30X R6*

= _I J --( 0_0 0V21I/_ 1) 031/'0 01I]_l)_' .-OV OX + Oy 3 _ ] , (2.6a)

along with a surface boundary condition that is nonzero only for j = 2,

Og'_J)(x'o) - F (2) (X) (2.6b)
OX
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the remainingboundaryconditionsbeingall homogeneous.The neglectedO(e_-) terms

on the left hand side represent the O(L*/_*) weakly-nonparallel terms related to the slow

growth of the unperturbed mean boundary layer. The neglect of these terms is justified, at

this stage, only on the basis of the historical success of the quasiparallel approximation in

producing results which are in satisfactory agreement with the experiments as well as direct

numerical simulations. As we show later, the net receptivity is effectively concentrated in

a relatively short region with a length scale that is intermediate between the instability

wavelength and the distance from the leading edge. Hence, it is also possible to justify the

quasiparallel approximation in this problem on a rational basis. Moreover, as alluded to

above, the nonparallel effects can also be incorporated into the resulting equations in an a

posteriori manner.

As seen from (2.6), 0_ 1) satisfies an inhomogeneous differential equation with a

source term arising from the interaction of the short-scale mean flow perturbation k_ 1) with

the leading unsteady perturbation _b0. On the other hand, since the motion corresponding

to g,_2) is driven only by the forcing at the boundary, it seems convenient to illustrate the

solution procedure just for this case, and then quote the final result for the wall-suction

problem. Thus, from now on we will suppress the effects of steady surface suction and

only solve for the streamfunction _b_2). We will first obtain the solution for g,_:) (actually

the T-S wave part of it) by a formal Green's function technique which was first used by

Tam [26] in a similar context, and subsequently show how the same solution could also have

been obtained by generalizing the solution obtained for a localized receptivity problem. In

order to obtain the Green's function G(2)(X, YiwIXs ), set F(2)(X) = _(X-Xs) where the

subscript s denotes the position of the source. In order to obtain the instability component

of the streamfunction _b(2), it is again sufficient to solve for just the part of the Green's

function G which corrresponds to the T-S wave produced by the point source at X = Xs.

This can be done quite easily by extracting the residue of the pole, corresponding to the

local T-S wavenumber, of the Fourier transform of G (j) with respect to the fast streamwise

variable X. After introducing the local coordinate _ = X - X_ and the Fourier transform

1 / e_i_ _= ao)(,,,y) , (e.7)
--00
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equation(2.6)reducesto tile Orr-Sommerfeld(O-S)equation

d 2 ( d22 _ a2)_(2) _ ia_lo'_(2)-iw(d--_-a2)G (2) + ia_ dY

subject to

iaG(2)(a, O) = 1/v/-_ ,

1 d 2 2

- a2) Q(2)= o ,

(2.8.)

leading to the following expression for the T-S wave produced by the point source at

X = X_:

G(2) ,.. wiXs ) _ 1 Eq(Y ;co, x) A(2)(a_,Xs) e i[°rs(x)-°rs(x')] H(X - X.)

(2.9a)

Here Eq(Y; w, x) denotes the (appropriately normalized) instability wave eigenfunction for

the physical quantity denoted by q, while A(2) represents the normalized initial amplitude

(i.e., at the source location) of the fluctuation in q, determined numerically as the residue

contribution corresponding to the pole of _(2) at the local T-S wavenumber a = aTS(X_).

In this paper, we will assume the eigenfunctions for different flow variables to have been

normalized to make the maximum of the streamwise velocity fluctuation across the bound-

ary layer equal to unity. The spatial phase tZ)TS of the generated instability wave is given

by the indefinite integral over the slowly varying wavenumber,

X

Ors(X) = / aTS(X) dX . (2.9b)

_te Would like to point out that the Green's function problem (2.8a,b) is mathematically

identical to the vlbratlng-ribbon problem first analyzed by Gaster [39], and subsequently by

others ill Refs. 40-41. Moreover, Gqr s is also equivalent to a special case (corresponding

to a point disturbance) of the "outer" solution for tile problem of receptivity due to a local

region of wall-admittance variation (Refs. 3,4). Thus, the function A (2) in (2.9a) is identical

to the "efficiency function" of Ref. 4, apart from a scaling factor related to the particular

choice for the length scale L*. The A (j) function characterizes the intrinsic efficiency of any
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localizedreceptivityprocess,beingdependentonlyon thetypesof free-streamdisturbance

andsurfacenon-uniformity,alongwith themeanboundary-layerprofile.

Using(2.9a),it is easyto seethat theT-Swavepart of the total unsteadymotion

is givenby theintegral

q(2) 1 Eq(Y; w, x)e i®(X)
TS -- V/_

X

f x,) F(2)(Xs) e H(X - X,) dX,. (2.10)

It is then immediately obvious that this solution could also have been obtained from the

localized solution

q(2) 1
Ts = -_r Eq(_; x; f) A(_-)(_,x) e i_TzX

X!

f
X,

e -ioTSx" dX_ , (2.11)

Xi and X l being the extremities of the local inhomogeneity, by letting the boundary-layer

properties, i.e., the instability wavenumber aTs and the efficiency function A (2), vary over

the length of the receptivity region. Note that the Green's function technique fails in the

wall-suction case since the inhomogeneity there depends on both the streamwise and wall-

normal coordinate (2.6a). However, the generalization of the localized results in the above

sense is still vafid, thus enabling us to relate the T-S wave amplitude directly to the steady

suction distribution via the efficiency function A(I) obtained for the localized problem.

The above results establish a clear connection between the localized and nonlo-

calized receptivity problems; not only is the underlying physical mechanism the same in

these problems, but in fact, the same general equation (namely, 2.10) can be used to de-

termine the instability wave amplitude, given the streamwise distribution of the surface

non-uniformity. This relationship between the two types of problems was also discussed by

Nishioka and Morkovin [22] in their review of boundary-layer receptivity. For most practical

purposes, the only major difference between the localized and nonlocalJzed receptivities

corresponds to the length of the integration domain, which, in the latter case, is much

larger than the length scale over which the integrand varies. As a result, it would seem

that the distributed receptivity problems need to be studied separately for each geometry of
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interest,sinceit isnot possibleto separatethe influenceof surfacegeometryfromthat of an

intrinsicefficiencyfunction,A (j), as in the locahzed case (2.11). However, later results will

show that, since the receptivity is still concentrated in a relatively short region compared

to the length scale (g*) over which A (j) varies significantly, decoupling of the above type is

still possible. Furthermore, Eq. (2.10) also suggests that due to the additive effect over a

large number of wavelengths, the receptivity due to distributed nonuniformities could be-

come significantly larger than that for a single, isolated nonuniformity. The extent of this

increase is crucially dependent upon the relative phase and magnitude of the contributions

from different receptivity locations. In this context, it is worth noting the resemblance

between the integral in (2.10) with those arising in wavepacket problems, or to be more

precise, in studies of spatial wave patterns produced by time harmonic point sources. Of

course, physically, the difference between the two types of problems is that, in the wave

pattern case, the value of the integral is determined by the interference between different

wavenumber components emanating from the same spatial location, while in the present

problem, the resultant motion is determined by an interference between waves of the same

type (the T-S mode) but produced by a sequence of sources, the phase variation among

which is decided by the spatial distribution F (j) of the surface nonnniformity. Finally, it is

also possible to draw an analogy between the present problem with diffraction problems in

optics. The solutions (2.9), (2.11) and (2.10) are roughly analogous to the electromagnetic

field generated by a compact source and that in a Fraunhoffer and in a Fresnel region,

respectively.

For computational purposes, it is more convenient to express the integral solution

(2.10) in terms of the local Reynolds number R = R-_j/2. Hence, identifying the shorter

length scale L* with the local boundary-layer scale, R_. 1/_ x*, and recognizing the invariance

of the right hand side of (2.10) with respect to the choice of the length scale, we obtain the

equation

q(J) _ Eq(Y; _, R) e10Ts(R)TS

R

/ A(J)(..,R.) e -i°rs(n') H(R- Rs)dRs,

(2.12)
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where A (j) now denotes the efficiency function based on the local length scale, as obtained,

for instance, in studies of locahzed receptivity problems [3'4]. All quantities in (2.12) other

than the instability phase OTS and the geometry function F (j) are slowly-varying functions

of the Reynolds number R. To show the variation of the efficiency function, A(j), with R,

its magnitude is plotted for both the wall-suction and wall-admittance problems in Figs.

2a and 2b, respectively. So that the reader may have an idea about the variation of the

efficiency function, A(J), with R, we have plotted its magnitude for both the wall-suction

and wall-admittance problems in Figs. 2a and 2b, respectively. For reference, the lower

and upper branch locations at each frequency are also indicated by open and filled circles,

respectively, in both these figures. Since the streamwise velocity perturbation is of primary

interest in low-speed flows, the ordinate in these figures corresponds to the choice q = u in

A (j). For this same reason, all subsequent results in this paper will also be based on the

streamwise velocity perturbation associated with the generated instability motion.

By differentiating with respect to R, Eq. (2.12) can also be converted to a wave

amplitude equation similar to that obtained by Tam [27],

OUTS(J) i O(_TS u(j)OR - _ TS + A(J) F(j) + O(e,), (2.13)

where u_ ") denotes the maximum of the streamwise velocity perturbation across the bound-

ary layer at station R, while 0ors represents twice the slowly-varying instability wavenum-OR

ber aTS, and the O(Q) terms are again related to the weak non-parallelism of the base flow.

The homogeneous solution of this amplitude equation corresponds to the nearly-periodic T-

S motion which is generated wherever the local spectrum of the geometry function F(J)(R)

overlaps with the T-S mode. As seen from Eq. (2.13), when the receptivity occurs contin-

uously over a large number of instability wavelengths, the change in the wave amplitude

at any station is due to a combined effect of the local amplification of the instability waves

generated upstream of the present location and the external input due to local receptivity.

As pointed out by Tam [27], the relative contribution from the two different inputs depends

on the local amplitude of the instability wave. In the region where the receptivity begins,
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it is obviousthat the local rate of change will be dominated by the contribution from the

external disturbance. Itowever, when the instability amplitude has reached a sufficiently

large magnitude, this contribution becomes much smaller compared to the local amplifi-

cation due to transfer of energy from the mean flow. Itence, one can expect that as the

location corresponding to the upper branch of the neutral stability curve is approached,

the amplitude evolution curve will asymptote to that of a pure T-S wave eigensolution.

Of course, in the immediate vicinity of the upper branch location, where the instability

growth rates are very small, the rate of change in the amplitude is again dominated by

the external input. However, the streamwise extent of this region, which now corresponds

to the shift in the neutral location (i.e., where the disturbance amplitude is stationary), is

rather small, being inversely proportional to the amplitude in this region. Thus, unless the

dominant surface nonuniformities occur far downstream of the lower branch, a case which

is not of much practical interest, one may assume tliat the maximum instability amplitude

is practically the same as the amplitude at the theoreticM neutral location.

t
i

Since the maximum instability amplitude is most relevant to an "amplitude" cri-

terion used for transition prediction, it may be viewed as a global measure of the generated

instability motion in a distributed-receptivity problem. Moreover, in order to separate the

receptivity, per se, fl'om the linear amplification stage, one could divide this maximum am-

plitude by the amplification factor between the two neutral locations to obtain an "effective

coupling coefficient", C (j), at the lower branch location, i.e., before the beginning of the

linear amplification stage. Note that a local coupling coefficient [1'271 relates the output of

the receptivity process, i.e., the amplitude of the generated instability wave, to its input,

i.e. the free-stream disturbance amplitude. Since we are considering weak surface distur-

bances here, it also varies linearly with the amplitude of the surface disturbance, and will,

therefore, be assumed to be normalized by this latter input as well. The effective cou-

pling coefficient, C (j), corresponds to the local coupling coeffÉcient for an equivalent, but

ficticious localized mechanism which has all its receptivity lumped together at the lower

branch station, in the sense of leading to the same maximum instability amplitude. From
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this perspective,onemayalsogaugethedevelopmentof the entire receptivity process by

examining the cumulative contribution to this effective coupling coefficient as a function of

the local Reynolds number.

3. NUMERICAL RESULTS

In this Section, we present numerical solutions to the wave amplitude equation

(2.13) for some representative distributions of the wall suction velocity and the wall ad-

mittance. The first type of distribution considered below is a single region of uniform

suction/admittance distribution, i.e., the isolated suction strip case analyzed in Ref. 3

using locafized receptivity analysis. Of course, multiple strip configurations are more rele-

vant to LFC [29], and these are analyzed next. Reed and Nayfeh [33] examined theoretically a

number of multiple strip configurations involving different combinations of parameters such

as the total number of strips, spacing between the adjacent strips, and finally, variation in

the amount of suction applied through each strip. These investigators also carried out an

optimization study in order to determine the configuration which has the most beneficial

effect oil the stability of the dangerous frequency components. Here, we make an effort to

complement that study by examining what effect the various configurations have on the

receptivity stage. Finally, we consider in detail the case of uniformly spaced porous strips,

where it is possible to arrive at some general conclusions regarding the distributed recep-

tivity problem, by separately analyzing the receptivity due to each Fourier harmonic of the

periodic distribution. In fact, it is also possible to obtain closed-form analytical solutions

for this case which provide extra insight into the distinctive features of the distributed-

receptivity problems; see, for instance, Ref. 42, where we examine this case in connection

with random surface inhomogeneities. In this paper, we will content ourselves with pre-

senting a more physical discussion based on tile theory of Ref. 42, which will serve as a

background for the understanding and interpretation of the subsequent numerical results.

Let us begin with the case of a single, isolated suction strip with a uniform suc-

tion/admittance distribution. Figure 3a shows the effective coupling coefficient for both
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mechanisms plotted against the width of this strip for a frequency parameter corresponding

to f (= w*v*/U_ 2) = 20 x l0 -6, where we have assumed the suction strip to be centered

on the lower branch location at this frequency. The absissca w in this graph corresponds

to the strip width normalized by the local instability wavelength, whereas the ordinate has

been scaled by the coupling coefficient in the narrow strip limit, w --+ 0. While varying

the width of the suction strip, we have assumed the level of the surface admittance to be

fixed. However, the suction velocity is varied with w so as to keep the total mass flow rate

constant, since it is the latter quantity which determines the overall reduction in the growth

of the instability wave. The results from the present (nonlocalized) theory are shown by

solid curves in Fig. 3a, while the broken line curves represent results from the localized

analysis in Ref. 3.

The receptivity in discrete configurations is concentrated at the points of disconti-

nuity (Fig. 3b)(and, hence, the generated instability motion corresponds to a superposition

of the T-S waves generated at each end of the strip. Since both of these waves have identical

amplitudes in a localized analysis, it is obvious that their mutual interference will lead to a

complete cancellation of each other for integer values of w, whereas a mutual reinforcement

will result for w = n + 1/2 [3]. In the non-localized analysis, variation of boundary-layer

properties between the two ends alters this simple scenario by affecting both the relative

amplitude and phase of the T-S waves generated at the two ends of the strip. In the partic-

ular case shown in Fig. 3a, A(1) and A(2) decrease in magnitude by approximately 9% and

23%, respectively, across the two ends of the strip when w = 5. However, the effect of these

variations appears to be pronounced only in the vicinity of the extrema of the coupling

coefficient curve, especially for w > 2.0. Of course, such wide strips are not very relevant

to LFC, except possibly at rather high frequencies where the instability wavelength is quite

small. Nevertheless, this simple example serves to illustrate how variations in boundary-

layer properties across the region of receptivity start to become significant as this region

becomes elongated in its streamwise extent.
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Next, consider the wall-suction and wall-admittance distributions corresponding

to multiple strip configurations. The objective here is to assess the effects of large-scale non-

uniformities due to the concentration of suction in certain parts of the airfoil chord. The

different cases examined as part of this study are listed in Table 1, and will be summarized

now. Note that in their stability related investigation, Reed and Nayfeh only considered

the effects of applying suction between the two neutral branches. However, such may

not always be the case. In fact, the hybrid LFC approach combines the use of suction

in the leading edge region with a favorable pressure gradient in the mid-chord region for

reducing the growth of boundary-layer instabilities [_9]. Hence, we examined the receptivity

due to uniform suction applied through regularly-spaced suction strips in both the front

and/or mid-chord regions (cases i-iii in Table 1). Figure 4 shows the cumulative variation

in the effective coupling coefficient for these three cases. As one can see from case iii, the

receptivity is distributed quite symmetrically on both sides of the lower branch station,

with the strips closer to the neutral station being more effective than those away from

it. Thus, the contribution to ]C(j)] from strips 13 and 14 (which are closest to R_.b.) is

0(100) in this case, while that of number 1 and 24 is only about O(1) or smaller. This is

to be expected since the instability waves generated close to the lower branch location can

undergo the highest possible amplification before reaching the upper branch.

Reed and Nayfeh also studied the effects of non-uniformly distributed suction, and

found that increased amounts of suction in the vicinity of the two neutral branches was

particularly beneficial for reducing the instability amplification (Figs. 14-16 vs. Figs. 20-22

in Ref. 33). On the other hand, a configuration involving twice the amount of suction in

the middle third of the strips was found to be sub-optimal (Figs. 17-19 in Ref. 33). In

contrast to this, we found that increasing the amount of suction by 20% in the two neutral

zones (while reducing the suction in the middle third of the strips by 40% in order to keep

the total suction the same) increased C (I) by approximately 20% (case iv) as compared

to the case of uniform distribution, (ii). On the other hand, the suboptimal configuration

from the viewpoint of stability decreased the receptivity by 25% (case v). This behaviour
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suggests that the requirements for optimizing the receptivity and stability processes may

at times counter to each other. Note that the gains obtained by optimizing the suction

distribution for reduced amplification are not overly spectacular corresponding to reduction

of about 3-4% in the N-factor or equivalently, instability amplitudes which are smaller by

a factor of 20-30%. Since the results above indicate that comparable benefits may also be

expected fl'om the optimization of the receptivity stage, serious consideration should be

given to the question of combined optimization methods whenever the overall receptivity

is dominated by the suction/admittance-induced receptivity.

Before moving on to the next case, we would like to point out that the suction

configuration used by Reed and Nayfeh [a3] involved 5/8" wide strips which were spaced

rather far apart (4.5"). Since we felt that this set of dimensions represented too small a

ratio for the strip width to the spacing between the strips, we chose a value of 0.6 for this

ratio in tile above calculations, and assumed the strip spacing to be equal to the neutral T-S

wavelength at the frequency being considered (f = 20 x 10-8). The strip spacings in actual

designs are likely to be even smaller than tlie T-S wavelength, but the above conclusions

concerning the influence of the differeni types of spaiially inhomogeneous distributions are

not likely to depend upon either the width of the strips or the spacing between them. The

influence of strip spacing on the receptivity due to wall suction/admittance distributions

that are homogeneous on the longer length scale of the receptivity process will be analyzed

in the remaining part of this Section.

Since distributions of this type can be analyzed in terms of their individual Fourier

harmonics, we nov,, consider spatial distributions of the form

F (j) = e i°'_(R) where dOw _ 2c_(R) = 4rr --_R (2.14)
d R R_; '

R:_; being the Reynolds number based on the dimensional wavelength )¢(= 27r/_,_) of

the surface distribution, while ct_, denotes the dimensionless wavenumber based on the

Siowly_varYlng local length scale, L*. The distributions givenby (2.14) serve as models

for designs involving regularly-spaced suction strips (with uniform suction levels) which

2O

I
!
!

!
!

i

|



extendoverasignificantportionof theairfoil chord.Discretedistributionsof this typecan

essentiallybeviewedasacontinuousareasuction(whichdoesnot produceanyreceptivity)

with oscillatorycomponentscorrespondingto variousharmonicswhichcanbe analyzed

independentlyof eachother.

Nowconsiderthe integralformof the solution(2.10)for the abovecase,

2if" orsdn / A(j)(,_, R_) e2_ f "'(_'_-_rs)d_ dRs, (2.15)q(_) = Eq(Y; ,_, R) e

which shows that in regions where the forcing wavenumber a_ is significantly different

from the eigenmode wavenumber avs, the integrand oscillates on the shorter streamwise

scale corresponding to 27r/(a_s - a_), resulting in a cancellation of contributions from

adjacent source locations. The integral is then end-point dominated, implying that the

only receptivity occurs at the extremes of the surface inhomogeneity distribution. To

understand this point more clearly, one may note that the wide, isolated strip considered

before may also be viewed as a special case of the spatially-periodic distribution, having

a zero wavenumber throughout the interior region. Recall that Fig. (3b) showed how the

receptivity in this case is nearly localized to the end-points of the suction strip.

Another way to look at the spatially-periodic case is to consider it in the context

of the wave amplitude equation (2.13). From this viewpoint, when aw - aTS is O(1),

the particular solution of (2.13) (which is proportional to the wall-disturbance phase Ow)

is effectively decoupled from the eigenmode solution (which is proportional to the T-S

phase OTS), and, therefore, cannot transfer energy to the instability wave. In the other

extreme, when the two wavenumbers are exactly equal, which can only occur at a neutral

station since we are considering completely periodic surface disturbances, contributions

from the adjacent locations are in phase with each other, thus summing up to very high

levels of receptivity. Of course, the slow variations in the boundary-layer profile change the

instability wavenumber gradually, thereby making the two phases uncorrelated at far away

distances. In other words, the forcing is detuned with respect to the instability wave far
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upstream of the neutral station; it is locally resonant near the neutral station and detuned

again far enough downstream.

The length scale over which the resonance lasts, and, hence, over which the local

contributions add up directly, would determine precisely how much larger the effective

coupling coefficient is when compared to the localized case. The magnitude of this ratio

3/s
can easily be seen to be of O(R_.b. ) by inspecting the asymptotic approximation

c(j) v_ Eq(Y; _, Rzx.) A(J)(w, Rt.b.)
TS =

_/i ( 4__z_ _ 4_____)\ dR dR R-:-Rj.b.

(2.16)

obtained by exploiting the local stationarity of the integrand phase, Ou, - OTS, at the

resonance location R = R,.b. [42]. The dispersion factor (_- -4-_R)n=R,._ is essentially

a measure of how fast the forcing becomes out of "tune" with the eigenmode. As discussed

in Ref. 42, the imaginary part of d(_Ts/dR is larger than its real part for all frequencies,

thereby suggesting that the detuning effect is primarily due to growth rate variation in the

vicinity of the neutral curve as against the variation in the phase velocity. As mentioned

at the beginning of this section, the above ideas can be put on a more rigorous basis,

which also permits the analysis of more general near-resonant geometries (corresponding

to arbitrary modulations of the periodic forcing on the resonance scale), and the reader is

refered to Ref. 42 for the details of this analysis. Finally, one may also point out that since

the result (2.16) is independent of the nature of the surface-nonuniformity, it also confirms,

as well as explains, the more recent computations by Crouch (Ref. 5), where he found the

receptivity due to surface waviness to be "two orders of magnitude" larger than that due to

an isolated roughness element, as against his earlier findings (Ref. 6) that the receptivity

is comparable in both cases.

We now consider the question of numerically solving the wave amplitude equation

for this case. A crucial difference here from the discrete configurations examined previously

is that they all had a finite support, i.e., a definite streamwise origin, which simplified the

specification of an initial condition for the numerical integration. However, the periodic
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distributions have an infinite support, and in order to avoid starting the integration right

from the leading edge, one has to specify an appropriate initial condition at some finite

distance downstream.

Tam 12r], who examined the acoustic receptivity in the absence of any surface

disturbance, utilized a homogeneous initial condition for solving the amplitude equation.

However, the acoustic wavenumber is largely different from the instability wavenumber in

low-speed flows. Hence, the resonance condition is never satisfied, and as argued in the

previous paragraph, there would be little resultant receptivity in the entire region of inte-

gration. Whatever small amplitudes one finds by the numerical integration process would

essentially be dominated by the end-point contributions. This only suggests the inappro-

priateness of the numerical treatment, since the inflow location was chosen on a completely

artificial basis. Furthermore, setting the initial condition to zero automatically gives rise

to both the particular and the eigenmode solutions right at the inflow boundary, each

having the same (initial) amplitude but opposite phase. Once generated, these two solu-

tions remain decoupled from each other, effectively propagating independently throughout

: the region of integration. Thus, Tam's argument that the receptivity only occurs at the

start of integration is correct mathematically but not physically, having stemmed from the

unphysical initial conditions as discussed above. One should also note that, in his case,

the amplitude of the particular solution is essentially equivalent to the amplitude of the

free-stream disturbance, thus being independent of the local Reynolds number. Moreover,

since Tam imposed the initial condition at R _ 378, i.e., fairly close to the neutral location

(R = 576) of the frequency being considered (f = 56 x 10-8), the inflow-generated T-S

wave did not decay much (by a factor of ,,_ 1/5) before reaching the neutral station. Hence,

the calculated coupling coefficients were found to be O(1), and also to be insensitive to

small changes in the inflow Reynolds number.

In our case, provided the resonance condition is satisfied exactly, or nearly so,

the receptivity is confined to a relatively short region in the interior, and we adopt the

viewpoint that, as long as the inflow location is chosen to be sufficiently far upstream
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of the lowerbranch,the physical decay of the instability wave in the region upstream of

Rl.b. also serves to damp out any errors due to inappropriateness of the initial condition.

Thus, we found that the somewhat ill-founded homogeneous initial condition yields very

good agreement with the results obtained from the more rational inhomogeneous initial

condition corresponding to a nonzero particular solution but a zero eigenmode.

Figure 5a shows the variation of the wave amplitude in the wail-admittance prob-

lem for tile resonant distribution corresponding to aw = O_TS at R = Rt.b. for f = 20 x l0 -6.

The cumulative contribution to the effective coupling coefficient, as well as its rate of change

with respect to the local Reynolds number, are plotted in Figs. 5b and 5c, respectively.

The lower and upper branch locations at this frequency are indicated by circles in Figs.

5a-5c. Note that the ordinate in Fig. (5a) corresponds to the total amplitude, i.e., sum of

both tile particular and homogeneous solutions. The numerical calculation in this case es-

sentially involves integrating across the resonance region, where both solutions are linearly

dependent by virtue of having an identical phase variation to the leading order. This im-

plies that a unique decomposition of the total solution into its particular and homogeneous

components cannot be accomplished in a sensible manner, and an attempt to force this

separation (as in Ref. 5, where the receptivity due to surface waviness was examined) may

result in misleading conclusions. This, we believe, is the reason for the observed overshoots

in Ref. 5 in the amplitude of the homogeneous solution in vicinity of the lower branch

location, although on physical grounds one would expect a spatially-monotonic transfer

of energy to the instability wave. It should be noted that the spatially-periodic problem

leads only to a transient resonance, and, therefore, no singularity is expected in the total

solution. Therefore, separating the particular and homogeneous solutions leads to artificial

spikes in each component, each of them having little physical meaning.

Figure 5b shows that the magnitude Of the effective coupling coefficient increases

rapidly in vicinity of R_.b. (,_ 1037, indicated by an open circle in the figure), and remains

nearly constant in most of the unstable region. More specifically, it is seen from Fig. 5c

that the dominating contributions to ]c(J)[ are produced in a fairly small Reynolds-number
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range,of approximately800-1200.Similarbehaviourwasalsoobservedat other valuesof

thefrequencyparameter.

Figure6a showsthe effectivecouplingcoefficient, C (j), after being normalized

by the wall suction parameter _(1), as a function of the Reynolds number R x5 based on

the wavelength of the wall suction distribution. Analogous results for the wall-admittance

problem are shown in Fig. 6b. In both figures, results are plotted for frequencies ranging

from f = 20 x 10 -6 to f = 55 x 10-6. The corresponding N-factors are between approx-

imately 12 and 4, and, hence, the above range covers the frequencies of interest in both

laboratory and flight applications. Figures 6a-b show that the receptivity at each frequency

is mainly concentrated in a narrow range of wavelengths, with the effective coupling coeffi-

cient dropping off in a rapid but nearly symmetric manner away from the peak location. In

view of the discussion in the previous paragraphs, it is not surprising that the wavelength

corresponding to the maximum receptivity is equal to the T-S wavelength at the lower

branch location.

The rapid change in [c(J)[ in the vicinity of the resonant wavelength indicates

the rather dramatic effect receptivity might have upon the performance of the LFC system

under certain circumstances. In particular, if the free-stream disturbances are dominated

by the engine noise, in particular its discrete components corresponding, for example, to the

harmonics of the blade-passing frequency, then it becomes imperative to avoid suction-strip

spacings which are integer multiples of the neutral T-S wavelength at such frequencies. If

sufficient attention is not paid to these issues during the design process, slight variations

in the unit Reynolds number could increase the receptivity by an order of magnitude, as

shown by figures 6a and 6b.

The envelopes of the curves in Figs. 6a,b demonstrate how the maximum possible

receptivity varies with the free-stream disturbance frequency, or alternatively with the

wavelength of the surface nonuniformity distribution. For the purpose of comparison, we

have also shown the stationary phase result (2.16) as the dashed curve in these figures. As

one can see, there is an excellent agreement between the two results in the entire range
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of frequencies.Onemay observe that the maximum receptivity increases fairly rapidly

as the frequency parameter decreases. However, since the shape of the individual curves

appears to insensitive to the value of f, perhaps a more appropriate way to characterize this

type of receptivity would be to consider the effective couping coefficient as a function of the

detuning of the forcing wavenumber with respect to the resonant value. In fact, considering

the success of the stationary phase result, one could also rescale the ordinate by utilizing

simple order of magnitude estimates obtained through (2.16) used in conjunction with the

standard high Reynolds number asymptotic theory of T-S waves [42], Figures 7a,b show the

results from Figs. 6a,b replotted with the new absissca corresponding to the wavenumber

detuning parameter expressed as a percentage, and the ordinate being scaled by the coupling

coefficient in the zero detuning case. It is clear that, in each case, the different curves have

nearly collapsed onto each other, indicating that the dependence of the coupling coefficient

on the detuning parameter is practically independent of the frequency parameter in the

range of interest.

4. SUMMARY AND CONCLUDING REMARKS

In this paper, we have examined a simplified problem related to the acoustic

receptivity of boundary layers over airfoil surfaces equipped with laminar flow control sys-

tems. This model problem involves the generation of instability waves in a non-compact

region of short-scale variations in the surface suction velocity and/or admittance of the

porous surface. In particular, it was shown how the results for semi-compact or localized

regions of instability, i.e., regions which are comparable to the instability wavelength in

their streamwise extent, can be conveniently extended to more general situations. The

principal conclusions of this study are summarized below:

1. The same underlying physics behind the wavelength reduction process in localized

receptivity problems also applies in the distributed case.

2. The major difference between the localized and distributed receptivity problems is

related to the magnitudes of the respective coupling coefficients, which are much

3/s
larger in the latter case, by a factor of O(R_.b. ) based on asymptotic arguments.
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3. Most of the receptivityin the distributedcasestill occursin a relatively short
3/8 ,

region, of length O(Rt.b._ ), in the vicinity of the lower branch of the neutral

stability curve. This also implies that non-parallel effects can, again, be neglected

to the leading order in modelling this class of receptivity problems.

4. The receptivity due to spatially homogeneous distributions of surface suction and

admittance is dominated by a narrow band of Fourier harmonics, which involve a

detuning of less than about 10% with respect to the neutral instability wavenumber

at the lower branch location.

5. The functional variation of the effective coupling coefficient with respect to the

detuning parameter is nearly independent of the frequency of the external distur-

bance.

Having stated the conclusions, we would like to summarize the limitations of the

present results, and also suggest possible ways to overcome these limitations. As mentioned

before, the limitation to weak suction and admittance variations is mainly a theoretical one,

and, not likely to impede the application of the theory to real world problems. Perhaps

the principal limitation of the results in Section 3 stems from neglecting the role of surface

nonuniformities in modifying the stability of the base flow and in downstream scattering

of the instability waves produced by upstream variations in wall-suction or admittance.

Much of the stability modification really comes from the mean (spatially averaged) suction

level, since the accompanying variations only lead to an alternating pattern of stabilization

(in regions where the suction is larger than the mean) and destabilization (where there is

no suction or the suction level is below the mean), the net effect of which is of a higher

order as far as stability properties are concerned. However, these variations, in addition

to producing receptivity, also scatter a small fraction of the instability waves coming from

upstream. The relative effect of these neglected phenomena is locally of O(e_)), and their

neglect can, therefore, be justified even on the longer length scale of the receptivity process

by placing additional restrictions on the magnitudes of the surface suction and admittance

parameters. For practical applications, however, the accuracy of the coupling coefficients
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maybeaffectedsomewhatsignificantlyby tile errorsintroducedby theseapproximations,

especiallythe onerelatedto the influenceof meansuction.

Fortunately,the basicframeworkdescribedin Section2 appearsto be flexible

enoughto incorporateboth of theseeffectsin a relativelystraightforwardfashion. The

enhancedstability dueto the useof suctionmaybe accountedfor by incorporatingthe

meansuctioninto thebaseflow90 andcomputingtherelevantquantities(suchasaTS and

A (j)) on the basis of this modified boundary-layer profile. Due to the nonsimilar nature of

90, however, this would also mean repeating the entire calculation, including the efficiency

functions A(J) for each configuration of interest. The issue of instability wave scattering

by surface nonunlfornikles has just begun tO be analyzed in recent years, although it had

previously been looked into in great detail in relation to the scattering of radio waves (and

also acoustic waves) by distributed surface topography. Again, it would be possible to

incorporate the scattering coefficients from a local calculation, such as that of Zhang and

Kerschen [431 for the wall-admittance problem, into the amplitude evolution equation along

mucli tlie same lines as the present generalization of the instability wave "production" from

local coupling coefficients to larger distances.

Finally, even though the nonparallel effects are asymptotically small, and are

expected to be numerically small as well, if and when they do become significant in a

numerical sense, they can be accommodated fairly easily by using results from the usual

weakly-nonparallel theory. In such a case, one simply needs to replace the quasiparallel

phase function, OTS, in (2.12) with its nonparallel counterpart.

Overall, the present analysis provides a convenient tool to study the receptivity

in arbitrary nonlocalized geometries, instead of just quasiperiodic distributions. Note that

the problem of receptivity due to wall suction/admittance variations is somewhat simpler

in that one may assume a complete knowledge about the respective distributions for esti-

mating the receptivity. Moreover, due to the multip!e strip/slot configurations, the spatial
Z

spectra involved are discrete in nature, in contrast, the problem of roughness-induced re-

ceptivity involves both systematic distortions of the surface (related to surface joints and
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fastenings) and random ones originating during the manufacturing process itself, or arising

during operation (e.g., skin erosion, insect debris, etc.[2s]). In addition, the spectrum of

surface imperfections inevitably include both discrete and continuous components. The

deterministic part of this problem can be handled along much the same lines as here; how-

ever, the random component will require accounting for the stochastic nature of the forcing.

Understanding the receptivity process in wide-band, as well as random, disturbance envi-

ronments is indeed a daunting task, but one for which the prognosis appears quite promising

at the present time, especially in the experimental direction; see Kendall [44] . As a first step

towards addressing such issues theoretically, we have considered the interactions involving

random surface-disturbance fields, and the results of this investigation are being reported

in a separate paper.
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Table 1

Receptivity due to multiple strip configurations

case no.

(i)
(ii)

(iii)

(iv)

(v)

region of suction

R < R_.b.
Rl.b. < R < R,_.b.

R < R_,.b.

Rl.b. < R < Ru.b.

Rt.b. < R < R,_.b.

no. of strips

12

48

6O

48

type of distribution [ IC_l
uniform = 1.0 902

uniform = 1.0 829

uniform = 1.0 1639

concentrated near

neutral locations;

1.2 in outer 3rds,

0.6 in middle 3rd.

48 concentrated in

the middle of

the unstable region;

1.5 in middle 3rd,

0.75 in outer 3rds.

997

620
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